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Abstract—Recently, it has been shown that it is possible
to incorporate topological priors into Generative Adversarial
Networks (GAN) using persistent homology and topological loss
functions. Given accurate topological priors about the input
distribution, generative models can converge to the population
distribution much more rapidly by minimizing the topological
noise. In this paper, we show that it is possible to apply this
approach to Deep Convolutional GANs (DCGAN) and conditional
GANs (cGAN). Empirical evidence in both architectures show
that topological layers reduce the noise in the generated images
to a significant degree. Furthermore, integrating these layers into
conditional GANs makes it possible to promote different priors
for different kinds of images in the dataset, which is not possible
using GANs. Experimentally, we show that it is possible to get
mild improvements over the original topology layer approach
(using the same layer for every kind of image). We further test
the topological layers in colored images with 3 color channels,
and show that even though they do not improve the image quality,
they might be of potential use in semantic segmentation tasks in
the future.

I. INTRODUCTION

In “A Topology Layer for Machine Learning” [1], it was
shown that it is possible to incorporate topological priors to
train better performing Generative Adversarial Networks. The
authors first train their GAN model on a dataset, and then
minimize the topological loss with respect to a loss function
by (Adcock, Carlsson, and Carlsson, 2016) [2] using forward
and backpropagation. The results indicate that it is possible
to improve the clarity, quality, and the smoothness of the
produced images using this idea. For the GAN experiments
of the original paper, the topological priors mainly depend
on 0-dimensional persistence features, which correspond to
connected components. This is because even in a simple
example such as handwritten digits, different kinds of images
have different topological priors associated with them even in
the same distribution, but 0-dimensional persistence penalty
is typically the same for all kinds. For instance, images
corresponding to digit 1 typically do not have holes in them,
whereas the images corresponding to 6 do, but both would
benefit from minimizing the noise around the edges due to
disconnected components.

The aforementioned issue stems from the fundamental prop-
erty of the Generative Adversarial Networks that they do not
take into account auxiliary information in the input and only
try to imitate the population distribution. To fix this issue a new
architecture called conditional GAN [5] has been proposed to

incorporate auxiliary information into the generator and the
discriminator networks. This information is usually the labels
of the images, which makes it possible to generate images
with a desired label contrary to vanilla GAN. We show that
it is possible to use topology layers with conditional GANs
to promote different kinds of topological priors for different
kinds of images. Our results show achieve mild improvements
compared to the original approach.

We further test the extent of improvements of using topol-
ogy layers on Deep Convolutional Generative Adversarial
Networks (DCGAN). These are different from the GAN used
in (Brüel-Gabrielsson et al.) [1] in that the generator and the
discriminator use convolution layers instead of linear layers in
their architecture. Our empirical results show that the topology
layers do cause improvements in the quality of the images by
reducing the topological noise, however the improvements are
not as stark as in the case of vanilla GANs.

Finally, we test topology layers on colored images using
three color channels. The results do not show any improve-
ments over a standard GAN, which is possibly due to the
capability of the GAN network used in this project. However,
the topology layers produce an accentuation of image seg-
ments in certain cases, which is an evidence that they might
be effective in semantic segmentation tasks.

II. BACKGROUND

A. Topological Loss

We use the following topological loss function due to
(Adcock, Carlsson, and Carlsson, 2016): [2]
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This loss is defined for fixed p, q, i0 and takes a k-
dimensional persistence diagram PDk as an input. For in-
stance, since 0-dimensional homology counts the number of
connected components, using E(p, q, 2; PD0) penalizes all but
the most persistent connected component in the data. This
is because setting i0 = 2 skips the most persistent feature
in the sum. So, by using the loss function we can bias
a machine learning algorithm to form only one connected
component. Another example would be that using the loss
function E(p, q, 3,PD1) favors the formation of 2 holes in



the data since 1-dimensional homology counts the number of
holes. The parameter p can be increased to penalize the most
persistent features more, and the parameter q can be increased
to penalize features that appear later in the filtration.

The idea behind being able to integrate this loss function
into a neural network is that it is differentiable, and therefore
we can perform backpropagation on it. It’s derivative with
respect to a simplex σ is the following:

∂E
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∑
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Iπf (k)(bi)=σ +
∑
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∂E
∂di

Iπf (k)(di)=σ

where πf (k) maps birth and death of a homology class to the
simplex that created and destroyed it.

B. Generative Adversarial Networks

Generative Adversarial Nets (GAN) [3] are frameworks
to estimate generative models in Machine Learning. They
are implemented by training two separate neural networks, a
generator network, and a discriminator network. The objective
of the generator is to try to estimate an unknown probability
distribution given samples from that distribution. For instance,
if the distribution is the images of human faces, then the
generator tries to generate realistic human face images. The
objective of the discriminator is to distinguish real samples
from the samples generated by the generator. In the previous
example, a discriminator would try to distinguish between real
human faces and fake ones generated the neural net.

The topological layer idea is very suitable for this kind of
problem. In “A Topology Layer for Machine Learning” [1], the
authors demonstrate that it is possible to denoise handwritten
digits generated by a GAN by adding a topology layer to the
GAN. The persistence diagrams for the topological loss are
calculated using the superlevel set filtration on the pixel values.
The idea relies on the observation that all based on this filtra-
tion, there should be 1 connected component for each digit. So,
it is possible to promote 1 connected component using the loss
function E with 0-dimensional persistence PD0 to penalize the
formation of more than 1 connected components. The authors
demonstrate that the topological GAN trained for much less
number of iterations performs reasonable well compared to a
vanilla GAN trained for longer.

1) Deep Convolutional GANs: GANs are usually used to
generate and learn images. And the most important aspect of
generating images from a distribution is the architecture of
the neural networks that correspond to the generator and the
discriminator. For this reason, a much more effective version
of GANs are usually used on image generation tasks called
DCGANs. DCGAN stands for deep convolutional generative
adversarial network, and uses Convolutional Neural Networks
to model the generator and the discriminator. It has been intro-
duced in (Radford, Alec, Luke Metz, and Soumith Chintala,
2016) [4] and has been shown to be much a much more
effective way to generate images compared to vanilla GANs.

2) Conditional GANs: Vanilla GANs are state-of-the-art
generative models for images, however they lack the ability to
incorporate auxiliary information into the model. For instance,

Fig. 1: Before Topological Layer

Fig. 2: After Topological Layer

Fig. 3: Vanilla GAN results with and without the use of
topological loss

it is not possible to generate a human face with a particular
trait with a vanilla GAN trained on pictures of human faces. To
overcome this obstacle, (Mirza, Mehdi, and Simon Osindero,
2014) [5] introduced conditional GANs, cGANs for short.
cGANs embed auxiliary information of the training data to
the generator and the discriminator using an embedding layer
at the beginning of the neural networks. This advancement
makes it possible for GANs to generate images with given
labels, given that the input set is labeled. cGANs have been
recently shown to be useful for Image-to-image translation
[6], Text-to-image synthesis, Video generation [7], and image
segmentation [6].

III. TOPOLOGICAL VANILLA GAN

Following the code provided in (Brüel-Gabrielsson et al.)
[1], I first reproduced the results of this paper to see that it is,
indeed, possible to reduce topological noise using a topological
layer in vanilla GANs. This GAN uses 4 linear hidden layers of
size 128, 256, 512, and 1024 respectively. The topological loss
is calculated using the sum of the persistence feature lengths
of dimension 0. The persistence diagram is computed with the
Dionysus library for TDA using superlevel set filtration of the
Freudenthal triangulation of the image. Gradient descent was
performed using the PyTorch library. [8]

We can see in figure 3 that the topological noise function
did cause the generated images to be clearer. This is what we
have expected since penalizing connected components should



Fig. 4: Before Topological Layer

Fig. 5: After Topological Layer

Fig. 6: DCGAN results with and without the use of topological
loss

incentivize one connected component, which produces clearer
images.

IV. TOPOLOGICAL DCGAN
To see the effect of a topology layer in reducing the

topological noise of fake images generated by a DCGAN, I
programmed and trained a DCGAN on MNIST handwritten
digits dataset and the Fashion MNIST dataset, which is a
more complicated dateset. The architecture for the generator
consisted of a fully connected layer and 3 convolution layers
with kernel size of 3, stride 1, and padding 1. Batch normal-
ization was used in between every layer, and as the activation
function, Leaky ReLU was used between all hidden layers.
Finally tanh was used to convert the neural network output
to pixel value. I tried 3 different topological loss functions
to minimize the topological noise produced by the DCGAN.
These were all calculated based on the persistence diagram
induced by the superlevel set filtration of the Freudenthal
triangulation of the images. The first loss function was the sum
of the length of persistence pairs in the computed persistence
diagram. The other two loss functions were E(1, 0, 1,PD0),
and E(2, 0, 1,PD0), chosen with the goal of minimizing the
number of connected components formed. These have different
values for p, which means that they penalize more prominent
persistence features differently. The DCGAN was trained for
20 epochs on the MNIST handwritten digits dataset and for
30 epochs on the Fashion-MNIST dataset. The trained models
were then fed through the Adam optimization algorithm to

Fig. 7: Before Topological Layer

Fig. 8: With loss function as the sum of the length of the 0
dimensional persistence pairs

Fig. 9: With loss function as E(1, 0, 1,PD0)

Fig. 10: With loss function as E(2, 0, 1,PD0)

Fig. 11: DCGAN results on the Fashion MNIST dataset with
and without the use of topological loss



minimize the topological loss for 20 epochs using Stochastic
Gradient Descent.

For the MNIST handwritten digits data, we see in figure
6 that minimizing topological loss clearly produced better
results. This worked by removing the connected components
that correspond to noise as can be seen from the 8 figure in
the middle, 2 figure on the right center and the 5 figure on
the bottom left for instance. It also connected the previously
disconnected parts and produced smoother images as can be
seen for instance from the bottom 0 and 3 and top left 5.

For the Fashion-MNIST data, we see in figure 11 that
the results with this dataset were even better compared to
handwritten digits. We see that the fundamental problem with
the DCGAN was that it did not fill the images into one
piece. This obstacle was overcome by the topological loss
function by penalizing the formation of multiple connected
components. We also observe that the topological DCGAN
produced smoother images around the edges by removing
the noise around the edges. When it comes to the choice of
the loss function, it seems like the sum of persistence pairs
of dimension 0 and E(1, 0, 1,PD0) produced the most clear
images.

V. TOPOLOGICAL CONDITIONAL GAN

In this section, I wrote and trained a cGAN architecture
on the MNIST handwritten digits and the Fashion MNIST
datasets. The neural network for the generator consisted of
the embedding layer for the labels, 4 hidden layers of sizes
128, 256, 512, 1024, respectively and tanh activation function
to convert the output to pixel value. Between every hidden
layer, batch normalization was performed and neurons were
activated through Leaky ReLU layers.

It is not possible to integrate different topological priors into
unconditional GANs because we are not able to control the
labels or the auxiliary information of the generated images.
So, we are stuck with using a single topological loss, which
may or may not be appropriate for different kinds of images.
In theory, this should be possible with conditional GANs since
they are able to embed auxiliary information and labels into
the generator model. Therefore, the main hypothesis that I
wanted to test with this experiment was that incorporating
different topological loss functions tailored to different kinds
of images produces better results than minimizing a single loss
function as was done in the original topology layer paper [1]
and previous implementations in this project.

The experimental setups were as follows: I first trained the
cGAN model on the handwritten digits conditioned on their
labels for 20 epochs. Then, I tested two different topology
layers on the generator model. The first one was a standard
0-dimensional persistence loss function E(2, 0, 1; PD0). The
idea with this loss function was to reduce topological noise by
penalizing the formation of different connected components.
The other loss function was tailored specifically for each digit
depending on its topological properties. The loss function
corresponding to each digit was as follows:

Fig. 12: Before Topological Layer

Fig. 13: With E(2, 0, 1; PD0) as the loss function

Fig. 14: Specialized loss functions for each digit

Fig. 15: cGAN results on MNIST digits with and without the
use of topological loss

• Numbers 0, 6, and 9 have only one connected component
and 1 hole. The corresponding loss was E(1, 0, 2; PD0)+
E(1, 0, 2; PD1).

• Numbers 1,2,3,4,5,7 have only one connected component
and no holes. The corresponding loss was E(1, 0, 2; PD0).

• Number 8 has one connected component and two
holes. The corresponding loss was E(1, 0, 2; PD0) +
E(1, 0, 3; PD1).

I trained both topological layers separately for 20 epochs. The
results are shown in figure 15. First, note that I was able
to produce images of different labels in order since these
are produced by a conditional GAN. This was not possible
using a normal GAN. Looking at the images, we can see that
compared to the baseline first figure, both topological layers
produced much clearer and smoother images. The effect of the



specialized loss functions was not as strong as I had hoped. We
can see clear good results such as the top left 0 digit, which
has a much more defined hole in the third figure compared
to the first two. The digit 8 is also a good example since its
holes are more clear in the case of specialized loss function.
However, these good results did not hold for all digits. In
general, it seems to me that some digits in the second figure
with the fixed loss function had less noise around the edges.
The digits 4 and 2 were examples of this. This could possibly
have to do with the fact that when we try to minimize multiple
loss functions, we take away from our ability to minimize a
single one of them optimally. So, the topological GAN with
specialized losses might not have minimized the 0-dimensional
persistence loss as much as the standard topology layer, and
thus producing less smoother digits in some cases. On the
other hand, the results with the digits 8 and 0 indicate that it
might be optimal to mix these two approaches to get a better
topology layer.

The experiment with the Fashion-MNIST dataset was dif-
ferent in the sense that I did not test for the same hypothesis as
all of the topological priors on different labels were the same.
Every kind of image in this dataset contains one connected
component and zero holes. I first trained the cGAN for
50 epochs conditioned on the labels. Using the generator
obtained, I trained 3 different topology layers corresponding
to 3 different topological loss functions. The first one was
the sum of the lengths of persistence pairs of dimension
0. The second one was E(1, 0, 1; PD0). The third one was
E(2, 0, 1; PD0). So, the last two loss functions differed in the
p parameter.

The results of this experiment can be seen in figure 20. All
three topology layers produced much better results than the
original cGAN. All of them improved the baseline much more
than they did in the handwritten digits experiment. The reason
for this might be that in the case of Fashion-MNIST, the noisy
parts of the image are typically surrounded with points that
belong to the same connected component, which is not the case
with handwritten digits. For this reason, it should be easier to
remove the noise in Fashion-MNIST using 0 dimensional per-
sistence loss functions. When it comes to the loss functions, we
would expect for a E(2, 0, 1; PD0) to be incentivized to merge
two prominent connected components into one more than
E(1, 0, 1; PD0) as higher p penalizes prominent persistence
features more. This expectation is confirmed by observing the
boot figure on the right. However in general, E(1, 0, 1; PD0)
and sum of barcodes did a better job at producing more full,
clear, and smoother images.

Finally, I attempted to test the topological layer method on
colored images. I trained the cGAN on CIFAR-10, a dataset
of colored images with 10 labels. The training phase took
80 epochs. The resulting generator was then used to feed
3 different topology layers, each corresponding to different
topological loss functions. As in the previous experiment, the
first one was the sum of the lengths of persistence pairs of
dimension 0. The second one was E(1, 0, 1; PD0). The third
one was E(2, 0, 1; PD0). This time, the process for minimizing

Fig. 16: Before Topological Layer

Fig. 17: With loss function sum of lengths of persistence pairs
of dimension 0

Fig. 18: With E(1, 0, 1; PD0) as the loss function

Fig. 19: With E(2, 0, 1; PD0) as the loss function

Fig. 20: cGAN results on Fashion-MNIST with and without
the use of topological loss



loss was different since the images are colored. For each
image, I minimized the losses on each of the 3 channels
separately.

The results are shown in figure 25. Because of the lack
of computational resources the cGAN has not been trained
for long enough. It can be seen from the first figure that the
generator did not successfully model the input distribution.
However, I still wanted to see the effect of topological noise
reduction on all color channels to figure out if that would
make the images less blurry, clearer, or smoother. In all three
topological layers, the images got either much darker, or much
brighter. In all cases, topological layers accentuated certain
segments of the image by removing the topological noise
around them. The two bright images in the bottom line are
a good example of this. If similar colors are thought of as
belonging to the same image segment, by removing the noise
around the segment, the topological layer can be thought of as
improving the segmentation quality of the image. Although,
the topology layers have not improved the quality of the pro-
duced images, it was effective in improving the segmentation
of the image. This, might show that topology layers can be
effective in semantic segmentation tasks, even though this
experiment was not directly a semantic segmentation task.

VI. CONCLUSION

In this project I first replicated the results for topological
GANs in (Brüel-Gabrielsson et al.) [1] to confirm that incor-
porating topological priors into GANs improve their quality. I
further hypothesized that by using conditional GANs, we can
incorporate different topological priors for different kinds of
images and improve the produced image quality over standard
GANs and the standard topological GANs. This hypothesis
was tested on the MNIST handwritten digits datasets and
was shown to be true to a small extent. The reason why the
improvements were not as stark as I had hoped might be that in
the case of 2-D images tested in this paper, most of the errors
and topological noise stem from disconnected components,
which are readily remedied by the standard topology layer
approach. The conditional topological GAN approach used in
this paper might give better results in 3-D datasets where 1
and 2 dimensional persistence features are more important.

The topological layer idea was further tested on various
datasets, using different topological loss functions, and dif-
ferent GAN architectures, such as DCGAN, and cGAN. The
results showed that except in the case of colored images,
topology layers improved the quality of generators on every
dataset. The improvements were much better on the datasets
where there is a large noticeable segment and on architectures
that use linear layers instead of convolution layers. The reason
for this result is possibly that DCGANs are already designed
to produce smooth images using convolution layers, which
is similar to the purpose of adding topology layers. So, if
topology layers are incorporated into GANs, it might be a
better idea to incorporate them into Vanilla GANs instead of
DCGANs to get better improvements.

Fig. 21: Before Topological Layer

Fig. 22: With loss function sum of lengths of persistence pairs
of dimension 0

Fig. 23: With E(1, 0, 1; PD0) as the loss function

Fig. 24: With E(2, 0, 1; PD0) as the loss function

Fig. 25: cGAN results on CIFAR-10 with and without the use
of topological loss



Finally, it was tested whether or not topology layers would
improve the quality of colored images produced by cGANs.
The experiments showed that they did not improve the quality
and produced a certain darkening and brightening effect on
the images. This might be due to the fact that the baseline
generator was not that successful in modeling the original
distribution, which left too much topological noise for the
topology layer to handle. This could possibly indicate that
the topology layers might be counterproductive when used
above a certain topological noise level. Despite, these negative
results, however, it was noted that topology cGANs accentu-
ated prominent image segments in certain cases. This might
show that the topology layer idea can be used in semantic
segmentation tasks to reduce the noise around the segments.

REFERENCES
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